Application of ZrO2–SO3H as highly efficient recyclable nano-catalyst for the green synthesis of fluoroquinolones as potential antibacterial

نویسندگان

  • Ahmad Nakhaei Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • Sepideh Yadegarian Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
چکیده مقاله:

Various antibacterial fluoroquinolone compounds were prepared by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using Zirconia Sulfuric Acid (ZrSA) nanoparticle, as a catalyst in refluxing water. The results showed that ZrSA exhibited high catalytic activity towards the synthesis of fluoroquinolone derivatives, with the desired products being formed in high yields. Furthermore, the catalyst was recyclable and could be reused at least three times without any discernible loss in its catalytic activity. Overall, this new catalytic method for the synthesis of fluoroquinolone derivatives provides rapid access to the desired compounds in refluxing water following a simple work‐up procedure, and avoids the use of harmful organic solvents. This method therefore represents a significant improvement over the methods currently available for the synthesis of fluoroquinolone derivatives.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-Fe3O4@ZrO2-SO3H as highly efficient recyclable catalyst for the green synthesis of fluoroquinolones in ordinary or magnetized water

Core–shell zirconia-coated magnetite nanoparticle bearing sulfonic acid groups (nano-Fe3O4@ZrO2-H3PO4) have been prepared and used as an efficient acid catalyst in the synthesis of fluoroquinolons by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo...

متن کامل

Nano-Fe3O4@ZrO2-SO3H as highly efficient recyclable catalyst for the green synthesis of fluoroquinolones in ordinary or magnetized water

Core–shell zirconia-coated magnetite nanoparticle bearing sulfonic acid groups (nano-Fe3O4@ZrO2-H3PO4) have been prepared and used as an efficient acid catalyst in the synthesis of fluoroquinolons by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo...

متن کامل

An Efficient Green Approach for the Synthesis of Fluoroquinolones Using Nano Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst in two Forms of Water

Various antibacterial fluoroquinolone compounds were prepared by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with a variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using Zirconia Sulfuric Acid (ZrSA) nanoparticle, as a catalyst in the presence of ordinary or magnetized water upon reflux condition. The results showed that ZrSA exh...

متن کامل

Synthesis of Tetrahydrobenzo[a]xanthene-11-one Derivatives Using ZrO2–SO3H as Highly Efficient Recyclable Nano-catalyst

The catalytic effect of Zirconia Sulfuric Acid (ZrSA) nanoparticle which is synthesized from thereaction of ZrO with chlorosulfonic acid has been investigated in the synthesis oftetrahydrobenzo[a]xanthene-11-ones by one-pot three-component reaction of β-naphthol,aromatic aldehydes, and dimedone. Different reaction conditions were studied in the presence ofZrSA nanoparticle as catalyst. The resu...

متن کامل

Natural kaolin as an efficient recyclable catalyst for the synthesis of new 2,4-disubstituted quinolines

Substituted 2, 4- diphenyl quinolines were synthesized by a multicomponent domino reaction of anilines, aldehydes and terminal aryl alkynes. The synthetic pathway involves the formation of an imine, followed by the intermolecular addition of an alkyne to the imine. This intermediate immediately undergoes ring closure and oxidative aromatization. The reaction is catalyzed by natural kaolin, a st...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره Issue 4, pp. 325-460

صفحات  334- 345

تاریخ انتشار 2018-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023